3.5.24 \(\int \frac {\sqrt {\tan (c+d x)} (a B+b B \tan (c+d x))}{(a+b \tan (c+d x))^2} \, dx\) [424]

3.5.24.1 Optimal result
3.5.24.2 Mathematica [C] (verified)
3.5.24.3 Rubi [A] (verified)
3.5.24.4 Maple [A] (verified)
3.5.24.5 Fricas [B] (verification not implemented)
3.5.24.6 Sympy [F]
3.5.24.7 Maxima [A] (verification not implemented)
3.5.24.8 Giac [F(-1)]
3.5.24.9 Mupad [B] (verification not implemented)

3.5.24.1 Optimal result

Integrand size = 36, antiderivative size = 237 \[ \int \frac {\sqrt {\tan (c+d x)} (a B+b B \tan (c+d x))}{(a+b \tan (c+d x))^2} \, dx=-\frac {(a+b) B \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}+\frac {(a+b) B \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}-\frac {2 \sqrt {a} \sqrt {b} B \arctan \left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{\left (a^2+b^2\right ) d}+\frac {(a-b) B \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a-b) B \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d} \]

output
1/2*(a+b)*B*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))/(a^2+b^2)/d*2^(1/2)+1/2*(a 
+b)*B*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))/(a^2+b^2)/d*2^(1/2)+1/4*(a-b)*B*l 
n(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(a^2+b^2)/d*2^(1/2)-1/4*(a-b)*B*l 
n(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(a^2+b^2)/d*2^(1/2)-2*B*arctan(b^ 
(1/2)*tan(d*x+c)^(1/2)/a^(1/2))*a^(1/2)*b^(1/2)/(a^2+b^2)/d
 
3.5.24.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.10 (sec) , antiderivative size = 205, normalized size of antiderivative = 0.86 \[ \int \frac {\sqrt {\tan (c+d x)} (a B+b B \tan (c+d x))}{(a+b \tan (c+d x))^2} \, dx=\frac {B \left (-6 \sqrt {2} b \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )+6 \sqrt {2} b \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )-24 \sqrt {a} \sqrt {b} \arctan \left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )-3 \sqrt {2} b \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )+3 \sqrt {2} b \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )+8 a \operatorname {Hypergeometric2F1}\left (\frac {3}{4},1,\frac {7}{4},-\tan ^2(c+d x)\right ) \tan ^{\frac {3}{2}}(c+d x)\right )}{12 \left (a^2+b^2\right ) d} \]

input
Integrate[(Sqrt[Tan[c + d*x]]*(a*B + b*B*Tan[c + d*x]))/(a + b*Tan[c + d*x 
])^2,x]
 
output
(B*(-6*Sqrt[2]*b*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] + 6*Sqrt[2]*b*ArcT 
an[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]] - 24*Sqrt[a]*Sqrt[b]*ArcTan[(Sqrt[b]*Sq 
rt[Tan[c + d*x]])/Sqrt[a]] - 3*Sqrt[2]*b*Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x] 
] + Tan[c + d*x]] + 3*Sqrt[2]*b*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c 
 + d*x]] + 8*a*Hypergeometric2F1[3/4, 1, 7/4, -Tan[c + d*x]^2]*Tan[c + d*x 
]^(3/2)))/(12*(a^2 + b^2)*d)
 
3.5.24.3 Rubi [A] (verified)

Time = 0.73 (sec) , antiderivative size = 203, normalized size of antiderivative = 0.86, number of steps used = 17, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.444, Rules used = {2011, 3042, 4055, 3042, 4017, 1482, 1476, 1082, 217, 1479, 25, 27, 1103, 4117, 73, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\tan (c+d x)} (a B+b B \tan (c+d x))}{(a+b \tan (c+d x))^2} \, dx\)

\(\Big \downarrow \) 2011

\(\displaystyle B \int \frac {\sqrt {\tan (c+d x)}}{a+b \tan (c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle B \int \frac {\sqrt {\tan (c+d x)}}{a+b \tan (c+d x)}dx\)

\(\Big \downarrow \) 4055

\(\displaystyle B \left (\frac {\int \frac {b+a \tan (c+d x)}{\sqrt {\tan (c+d x)}}dx}{a^2+b^2}-\frac {a b \int \frac {\tan ^2(c+d x)+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle B \left (\frac {\int \frac {b+a \tan (c+d x)}{\sqrt {\tan (c+d x)}}dx}{a^2+b^2}-\frac {a b \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}\right )\)

\(\Big \downarrow \) 4017

\(\displaystyle B \left (\frac {2 \int \frac {b+a \tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}}{d \left (a^2+b^2\right )}-\frac {a b \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}\right )\)

\(\Big \downarrow \) 1482

\(\displaystyle B \left (\frac {2 \left (\frac {1}{2} (a+b) \int \frac {\tan (c+d x)+1}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}-\frac {1}{2} (a-b) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}\right )}{d \left (a^2+b^2\right )}-\frac {a b \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}\right )\)

\(\Big \downarrow \) 1476

\(\displaystyle B \left (\frac {2 \left (\frac {1}{2} (a+b) \left (\frac {1}{2} \int \frac {1}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}+\frac {1}{2} \int \frac {1}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}\right )-\frac {1}{2} (a-b) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}\right )}{d \left (a^2+b^2\right )}-\frac {a b \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}\right )\)

\(\Big \downarrow \) 1082

\(\displaystyle B \left (\frac {2 \left (\frac {1}{2} (a+b) \left (\frac {\int \frac {1}{-\tan (c+d x)-1}d\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\tan (c+d x)-1}d\left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}\right )-\frac {1}{2} (a-b) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}\right )}{d \left (a^2+b^2\right )}-\frac {a b \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle B \left (\frac {2 \left (\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} (a-b) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}\right )}{d \left (a^2+b^2\right )}-\frac {a b \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}\right )\)

\(\Big \downarrow \) 1479

\(\displaystyle B \left (\frac {2 \left (\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} (a-b) \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {a b \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle B \left (\frac {2 \left (\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} (a-b) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {a b \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle B \left (\frac {2 \left (\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} (a-b) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\tan (c+d x)}+1}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}\right )\right )}{d \left (a^2+b^2\right )}-\frac {a b \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}\right )\)

\(\Big \downarrow \) 1103

\(\displaystyle B \left (\frac {2 \left (\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} (a-b) \left (\frac {\log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {a b \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}\right )\)

\(\Big \downarrow \) 4117

\(\displaystyle B \left (\frac {2 \left (\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} (a-b) \left (\frac {\log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {a b \int \frac {1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}d\tan (c+d x)}{d \left (a^2+b^2\right )}\right )\)

\(\Big \downarrow \) 73

\(\displaystyle B \left (\frac {2 \left (\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} (a-b) \left (\frac {\log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {2 a b \int \frac {1}{a+b \tan (c+d x)}d\sqrt {\tan (c+d x)}}{d \left (a^2+b^2\right )}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle B \left (\frac {2 \left (\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} (a-b) \left (\frac {\log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {2 \sqrt {a} \sqrt {b} \arctan \left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{d \left (a^2+b^2\right )}\right )\)

input
Int[(Sqrt[Tan[c + d*x]]*(a*B + b*B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^2,x 
]
 
output
B*((-2*Sqrt[a]*Sqrt[b]*ArcTan[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]])/((a^2 
 + b^2)*d) + (2*(((a + b)*(-(ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]]/Sqrt[2 
]) + ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]]/Sqrt[2]))/2 - ((a - b)*(-1/2*L 
og[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]]/Sqrt[2] + Log[1 + Sqrt[2 
]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]]/(2*Sqrt[2])))/2))/((a^2 + b^2)*d))
 

3.5.24.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 2011
Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> 
 Simp[(b/d)^m   Int[u*(c + d*v)^(m + n), x], x] /; FreeQ[{a, b, c, d, n}, x 
] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c + d*x 
, a + b*x])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4055
Int[Sqrt[(a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[1/(c^2 + d^2)   Int[Simp[a*c + b*d + (b*c - 
 a*d)*Tan[e + f*x], x]/Sqrt[a + b*Tan[e + f*x]], x], x] - Simp[d*((b*c - a* 
d)/(c^2 + d^2))   Int[(1 + Tan[e + f*x]^2)/(Sqrt[a + b*Tan[e + f*x]]*(c + d 
*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && N 
eQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 
3.5.24.4 Maple [A] (verified)

Time = 0.05 (sec) , antiderivative size = 225, normalized size of antiderivative = 0.95

method result size
derivativedivides \(\frac {B \left (-\frac {2 a b \arctan \left (\frac {b \left (\sqrt {\tan }\left (d x +c \right )\right )}{\sqrt {a b}}\right )}{\left (a^{2}+b^{2}\right ) \sqrt {a b}}+\frac {\frac {b \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}+\frac {a \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}}{a^{2}+b^{2}}\right )}{d}\) \(225\)
default \(\frac {B \left (-\frac {2 a b \arctan \left (\frac {b \left (\sqrt {\tan }\left (d x +c \right )\right )}{\sqrt {a b}}\right )}{\left (a^{2}+b^{2}\right ) \sqrt {a b}}+\frac {\frac {b \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}+\frac {a \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}}{a^{2}+b^{2}}\right )}{d}\) \(225\)

input
int(tan(d*x+c)^(1/2)*(B*a+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^2,x,method=_RET 
URNVERBOSE)
 
output
1/d*B*(-2*a*b/(a^2+b^2)/(a*b)^(1/2)*arctan(b*tan(d*x+c)^(1/2)/(a*b)^(1/2)) 
+2/(a^2+b^2)*(1/8*b*2^(1/2)*(ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1 
-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))+2*arctan(1+2^(1/2)*tan(d*x+c)^(1/2) 
)+2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2)))+1/8*a*2^(1/2)*(ln((1-2^(1/2)*tan( 
d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))+2*arctan 
(1+2^(1/2)*tan(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2)))))
 
3.5.24.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1567 vs. \(2 (199) = 398\).

Time = 0.32 (sec) , antiderivative size = 3160, normalized size of antiderivative = 13.33 \[ \int \frac {\sqrt {\tan (c+d x)} (a B+b B \tan (c+d x))}{(a+b \tan (c+d x))^2} \, dx=\text {Too large to display} \]

input
integrate(tan(d*x+c)^(1/2)*(B*a+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^2,x, algo 
rithm="fricas")
 
output
[1/2*((a^2 + b^2)*d*sqrt(-(2*B^2*a*b + (a^4 + 2*a^2*b^2 + b^4)*d^2*sqrt(-( 
B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b 
^6 + b^8)*d^4)))/((a^4 + 2*a^2*b^2 + b^4)*d^2))*log(((a^5 + 2*a^3*b^2 + a* 
b^4)*d^3*sqrt(-(B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^8 + 4*a^6*b^2 + 6*a 
^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) - (B^2*a^2*b - B^2*b^3)*d)*sqrt(-(2*B^2*a* 
b + (a^4 + 2*a^2*b^2 + b^4)*d^2*sqrt(-(B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/ 
((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))/((a^4 + 2*a^2*b^2 
+ b^4)*d^2)) - (B^3*a^2 - B^3*b^2)*sqrt(tan(d*x + c))) - (a^2 + b^2)*d*sqr 
t(-(2*B^2*a*b + (a^4 + 2*a^2*b^2 + b^4)*d^2*sqrt(-(B^4*a^4 - 2*B^4*a^2*b^2 
 + B^4*b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))/((a^4 
+ 2*a^2*b^2 + b^4)*d^2))*log(-((a^5 + 2*a^3*b^2 + a*b^4)*d^3*sqrt(-(B^4*a^ 
4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b 
^8)*d^4)) - (B^2*a^2*b - B^2*b^3)*d)*sqrt(-(2*B^2*a*b + (a^4 + 2*a^2*b^2 + 
 b^4)*d^2*sqrt(-(B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^8 + 4*a^6*b^2 + 6* 
a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))/((a^4 + 2*a^2*b^2 + b^4)*d^2)) - (B^3*a^ 
2 - B^3*b^2)*sqrt(tan(d*x + c))) - (a^2 + b^2)*d*sqrt(-(2*B^2*a*b - (a^4 + 
 2*a^2*b^2 + b^4)*d^2*sqrt(-(B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^8 + 4* 
a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))/((a^4 + 2*a^2*b^2 + b^4)*d^2 
))*log(((a^5 + 2*a^3*b^2 + a*b^4)*d^3*sqrt(-(B^4*a^4 - 2*B^4*a^2*b^2 + B^4 
*b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) + (B^2*a^2...
 
3.5.24.6 Sympy [F]

\[ \int \frac {\sqrt {\tan (c+d x)} (a B+b B \tan (c+d x))}{(a+b \tan (c+d x))^2} \, dx=B \int \frac {\sqrt {\tan {\left (c + d x \right )}}}{a + b \tan {\left (c + d x \right )}}\, dx \]

input
integrate(tan(d*x+c)**(1/2)*(B*a+b*B*tan(d*x+c))/(a+b*tan(d*x+c))**2,x)
 
output
B*Integral(sqrt(tan(c + d*x))/(a + b*tan(c + d*x)), x)
 
3.5.24.7 Maxima [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 172, normalized size of antiderivative = 0.73 \[ \int \frac {\sqrt {\tan (c+d x)} (a B+b B \tan (c+d x))}{(a+b \tan (c+d x))^2} \, dx=-\frac {\frac {8 \, B a b \arctan \left (\frac {b \sqrt {\tan \left (d x + c\right )}}{\sqrt {a b}}\right )}{{\left (a^{2} + b^{2}\right )} \sqrt {a b}} - \frac {{\left (2 \, \sqrt {2} {\left (a + b\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) + 2 \, \sqrt {2} {\left (a + b\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) - \sqrt {2} {\left (a - b\right )} \log \left (\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) + \sqrt {2} {\left (a - b\right )} \log \left (-\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right )\right )} B}{a^{2} + b^{2}}}{4 \, d} \]

input
integrate(tan(d*x+c)^(1/2)*(B*a+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^2,x, algo 
rithm="maxima")
 
output
-1/4*(8*B*a*b*arctan(b*sqrt(tan(d*x + c))/sqrt(a*b))/((a^2 + b^2)*sqrt(a*b 
)) - (2*sqrt(2)*(a + b)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(tan(d*x + c)) 
)) + 2*sqrt(2)*(a + b)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(tan(d*x + c)) 
)) - sqrt(2)*(a - b)*log(sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1) + 
sqrt(2)*(a - b)*log(-sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1))*B/(a^ 
2 + b^2))/d
 
3.5.24.8 Giac [F(-1)]

Timed out. \[ \int \frac {\sqrt {\tan (c+d x)} (a B+b B \tan (c+d x))}{(a+b \tan (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate(tan(d*x+c)^(1/2)*(B*a+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^2,x, algo 
rithm="giac")
 
output
Timed out
 
3.5.24.9 Mupad [B] (verification not implemented)

Time = 37.53 (sec) , antiderivative size = 17323, normalized size of antiderivative = 73.09 \[ \int \frac {\sqrt {\tan (c+d x)} (a B+b B \tan (c+d x))}{(a+b \tan (c+d x))^2} \, dx=\text {Too large to display} \]

input
int((tan(c + d*x)^(1/2)*(B*a + B*b*tan(c + d*x)))/(a + b*tan(c + d*x))^2,x 
)
 
output
(log(- (((((((((256*B*a*b^3*(2*a^4 - b^4 + a^2*b^2))/d - 128*b^3*tan(c + d 
*x)^(1/2)*(a^2 - b^2)*(a^2 + b^2)^2*((4*(-B^4*a^4*d^4*(a^4 + b^4 - 6*a^2*b 
^2)^2)^(1/2) + 16*B^2*a^3*b^3*d^2 - 16*B^2*a^5*b*d^2)/(d^4*(a^2 + b^2)^4)) 
^(1/2))*((4*(-B^4*a^4*d^4*(a^4 + b^4 - 6*a^2*b^2)^2)^(1/2) + 16*B^2*a^3*b^ 
3*d^2 - 16*B^2*a^5*b*d^2)/(d^4*(a^2 + b^2)^4))^(1/2))/4 - (64*B^2*a^3*b^2* 
tan(c + d*x)^(1/2)*(a^6 + 17*b^6 - 29*a^2*b^4 + 19*a^4*b^2))/(d^2*(a^2 + b 
^2)^2))*((4*(-B^4*a^4*d^4*(a^4 + b^4 - 6*a^2*b^2)^2)^(1/2) + 16*B^2*a^3*b^ 
3*d^2 - 16*B^2*a^5*b*d^2)/(d^4*(a^2 + b^2)^4))^(1/2))/4 + (32*B^3*a^4*b^2* 
(a^6 + 13*b^6 - 45*a^2*b^4 + 39*a^4*b^2))/(d^3*(a^2 + b^2)^3))*((4*(-B^4*a 
^4*d^4*(a^4 + b^4 - 6*a^2*b^2)^2)^(1/2) + 16*B^2*a^3*b^3*d^2 - 16*B^2*a^5* 
b*d^2)/(d^4*(a^2 + b^2)^4))^(1/2))/4 - (16*B^4*a^4*b^3*tan(c + d*x)^(1/2)* 
(9*a^6 - 3*b^6 + 3*a^2*b^4 - 17*a^4*b^2))/(d^4*(a^2 + b^2)^4))*((4*(-B^4*a 
^4*d^4*(a^4 + b^4 - 6*a^2*b^2)^2)^(1/2) + 16*B^2*a^3*b^3*d^2 - 16*B^2*a^5* 
b*d^2)/(d^4*(a^2 + b^2)^4))^(1/2))/4 - (8*B^5*a^5*b^3*(9*a^4 - b^4))/(d^5* 
(a^2 + b^2)^4))*(((192*B^4*a^6*b^6*d^4 - 16*B^4*a^4*b^8*d^4 - 16*B^4*a^12* 
d^4 - 608*B^4*a^8*b^4*d^4 + 192*B^4*a^10*b^2*d^4)^(1/2) + 16*B^2*a^3*b^3*d 
^2 - 16*B^2*a^5*b*d^2)/(a^8*d^4 + b^8*d^4 + 4*a^2*b^6*d^4 + 6*a^4*b^4*d^4 
+ 4*a^6*b^2*d^4))^(1/2))/4 + (log(- (((((((((256*B*a*b^3*(2*a^4 - b^4 + a^ 
2*b^2))/d - 128*b^3*tan(c + d*x)^(1/2)*(a^2 - b^2)*(a^2 + b^2)^2*(-(4*(-B^ 
4*a^4*d^4*(a^4 + b^4 - 6*a^2*b^2)^2)^(1/2) - 16*B^2*a^3*b^3*d^2 + 16*B^...